18.1 / MULTIPLE PROCESSOR ORGANIZATIONS 641

Processor organizations

Single instruction, Single instruction, Multiple instruction, Multiple instruction,
single data stream multiple data stream single data stream multiple data stream
(SISD) (SIMD) (MISD) (MIMD)
Uniprocessor
Vector Array Shared memory Distributed memory
Processor processor (tightly coupled) (loosely coupled)
Clusters
Symmetric Nonuniform
multiprocessor memory
(SMP) access
(NUMA)

Figure 18.1 A Taxonomy of Parallel Processor Architectures

then each processor accesses programs and data stored in the shared memory, and
processors communicate with each other via that memory. The most common form
of such system is known as a symmetric multiprocessor (SMP), which we examine
in Section 18.2. In an SMP, multiple processors share a single memory or pool of
memory by means of a shared bus or other interconnection mechanism; a distin-
guishing feature is that the memory access time to any region of memory is
approximately the same for each processor. A more recent development is the
nonuniform memory access (NUMA) organization, which is described in Section
18.5. As the name suggests, the memory access time to different regions of memory
may differ for a NUMA processor.

A collection of independent uniprocessors or SMPs may be interconnected to
form a cluster. Communication among the computers is either via fixed paths or via
some network facility.

Parallel Organizations

Figure 18.2 illustrates the general organization of the taxonomy of Figure 18.1. Figure
18.2a shows the structure of an SISD. There is some sort of control unit (CU) that
provides an instruction stream (IS) to a processing unit (PU). The processing unit op-
erates on a single data stream (DS) from a memory unit (MU). With an SIMD, there is
still a single control unit, now feeding a single instruction stream to multiple PUs. Each
PU may have its own dedicated memory (illustrated in Figure 18.2b), or there may be

642 CHAPTER 18 / PARALLEL PROCESSING

l—EU—I‘—L IS ;lr*—']ml DS :ll——-’MU m DS M,

IS .
. " :

PU; ‘ ¢

DS
v, - (b) SIMD (with distributed memory)

[CUI—}_E’I PU, FEDI LMJ<—>
m = . "
(c) MIMD (with shared memory) I b HP?ZH [‘Mj}“_’

I O
A3

Shared

memory

g

Interconnection
network

CU = Control unit SISD = Single instruction, .

IS = Instruction stream = single data stream o

PU = Processing unit ~ SIMD = Single instruction, IS DS

DS = Data stream multiple data stream [CUT}——»{ PU, I‘—PFM._’H
MU = Memory unit MIMD = Multiple instruction,

LM = Local memory multiple data stream (d) MIMD (with distributed memory)

Figure 18.2 Alternative Computer Organizations

a shared memory. Finally, with the MIMD, there are multiple control units, each feed-
ing a separate instruction stream to its own PU. The MIMD may be a shared-memory
multiprocessor (Figure 18.2c) or a distributed-memory multicomputer (Figure 18. 2d).

The design issues relating to SMPs, clusters,and NUMAs are complex, involv-
ing issues relating to physical organization, interconnection structures, interproces-
sor communication, operating system design, and application software techniques.
Our concern here is primarily with organization, although we touch briefly on oper-
ating system design issues.

18.2 SYMMETRIC MULTIPROCESSORS

Until fairly recently, virtually all single-user personal computers and most workstations
contained a single general-purpose microprocessor. As demands for performance
increase and as the cost of microprocessors continues to drop, vendors have introduced
systems with an SMP organization. The term SMP refers to a computer hardware
architecture and also to the operating system behavior that reflects that architecture. An
SMP can be defined as a standalone computer system with the following characteristics:

1. There are two or more similar processors of comparable capability.

2. These processors share the same main memory and I/O facilities and are inter-
connected by a bus or other internal connection scheme, such that memory
access time is approximately the same for each processor.

(8.2 / SYMMETRIC MULTIPROCESSORS 643

3. All processors share access to /O devices, either through the same channels or
through different channels that provide paths to the same device.

4. All processors can perform the same functions (hence the term symmetric).

5. The system is controlled by an integrated operating system that provides
interaction between processors and their programs at the job, task, file, and
data element levels.

Points 1 to 4 should be self-explanatory. Point 5 illustrates one of the contrasts
with a loosely coupled multiprocessing system, such as a cluster. In the latter, the
physical unit of interaction is usually a message or complete file. In an SMP, individ-
ual data elements can constitute the level of interaction, and there can be a high
degree of cooperation between processes.

The operating system of an SMP schedules processes or threads across all of
the processors. An SMP organization has a number of potential advantages over a
uniprocessor organization, including the following:

« Performance: If the work to be done by a computer can be organized so that
some portions of the work can be done in parallel, then a system with multiple
processors will yield greater performance than one with a single processor of
the same type (Figure 18.3).

Time —

Process 1 ‘zzmzz_B////////////_

Process 2 ZZE—E////////////_

Process 3 FF7 777777777777 77 777 7.

(a) Interleaving (multiprogramming, one processor)

Process 1 _ZZZZZZ_ZZZZZE_

Process 2 NN 7 77 777 7 HEE—

Process 3 V2777777 .

(b) Interleaving and overlapping (multiprocessing; multiple processors)

[ZZ2 Blocked EEE Running

Figure 18.3 Multiprogramming and Multiprocessing

646 CHAPTER 18 / PARALLEL PROCESSING

* Time sharing: When one module is controlling the bus, other modules are
locked out and must, if necessary, suspend operation until bus access is achieved.

These uniprocessor features are directly usable in an SMP organization. In this
latter case, there are now multiple processors as well as multiple I/O processors all
attempting to gain access to one or more memory modules via the bus.

The bus organization has several attractive features:

* Simplicity: This is the simplest approach to multiprocessor organization. The
physical interface and the addressing, arbitration, and time-sharing logic of
each processor remain the same as in a single-processor system.

* Flexibility: It is generally easy to expand the system by attaching more proces-
sors to the bus.

* Reliability: The bus is essentially a passive medium, and the failure of any
attached device should not cause failure of the whole system.

The main drawback to the bus organization is performance. All memory refer-
ences pass through the common bus. Thus, the bus cycle time limits the speed of the
system. To improve performance, it is desirable to equip each processor with a cache
memory. This should reduce the number of bus accesses dramatically. Typically,
workstation and PC SMPs have two levels of cache, with the L1 cache internal
(same chip as the processor) and the L2 cache either internal or external. Some
processors now employ a L3 cache as well.

The use of caches introduces some new design considerations. Because each
local cache contains an image of a portion of memory, if a word is altered in one
cache, it could conceivably invalidate a word in another cache. To prevent this, the
other processors must be alerted that an update has taken place. This problem is
known as the cache coherence problem and is typically addressed in hardware rather
than by the operating system. We address this issue in Section 18.4.

Multiprocessor Operating System Design Considerations

An SMP operating system manages processor and other computer resources so that
the user perceives a single operating system controlling system resources. In fact, such
a configuration should appear as a single-processor multiprogramming system. In
both the SMP and uniprocessor cases, multiple jobs or processes may be active at one
time, and it is the responsibility of the operating system to schedule their execution and
to allocate resources. A user may construct applications that use multiple processes
or multiple threads within processes without regard to whether a single processor or
multiple processors will be available. Thus a multiprocessor operating system must
provide all the functionality of a multiprogramming system plus additional features to
accommodate multiple processors. Among the key design issues are the following:

* Simultaneous concurrent processes: OS routines need to be reentrant to allow
several processors to execute the same IS code simultaneously. With multiple
processors executing the same or different parts of the OS, OS tables and man-
agement structures must be managed properly to avoid deadlock or invalid
operations.

8.2 / SYMMETRIC MULTIPROCESSORS 647

Scheduling: Any processor may perform scheduling, so conflicts must be
avoided. The scheduler must assign ready processes to available processors.

Synchronization: With multiple active processes having potential access to
shared address spaces or shared I/O resources, care must be taken to provide
effective synchronization. Synchronization is a facility that enforces mutual
exclusion and event ordering.

Memory management: Memory management on a multiprocessor must deal with
all of the issues found on uniprocessor machines, as is discussed in Chapter 8.
In addition, the operating system needs to exploit the available hardware
parallelism, such as multiported memories, to achieve the best performance.
The paging mechanisms on different processors must be coordinated to enforce
consistency when several processors share a page or segment and to decide on
page replacement.

‘Reliability and fault tolerance: The operating system should provide graceful

degradation in the face of processor failure. The scheduler and other portions
of the operating system must recognize the loss of a processor and restructure
management tables accordingly.

A Mainframe SMP

Most PC and workstation SMPs use a bus interconnection strategy as depicted in
Figure 18.5. It is instructive to look at an alternative approach, which is used for a
recent implementation of the IBM zSeries mainframe family [SIEG04, MAK04],
called the z990. This family of systems spans a range from a uniprocessor with one
main memory card to a high-end system with 48 processors and 8 memory cards.
The key components of the configuration are shown in Figure 18.6:

Dual-core processor chip: Each processor chip includes two identical central
processors (CPs). The CP is a CISC superscalar microprocessor, in which
most of the instructions are hardwired and the rest are executed by vertical
microcode. Each CP includes a 256-KB L1 instruction cache and a 256-KB L1
data cache.

L2 cache: Each L2 cache contains 32 MB. The L2 caches are arranged in clus-
ters of five, with each cluster supporting eight processor chips and providing
access to the entire main memory space.

System control element (SCE): The SCE arbitrates system communication,
and has a central role in maintaining cache coherence.

Main store control (MSC): The MSCs interconnect the L2 caches and the
main memory.

Memory card: Each card holds 32 GB of memory. The maximum configurable
memory consists of 8 memory cards for a total of 256 GB. Memory cards
interconnect to the MSC via synchronous memory interfaces (SMIs).

Memory bus adapter (MBA): The MBA provides an interface to various types
of /O channels. Traffic to/from the channels goes directly to the .2 cache.

648 CHAPTER 18 / PARALLEL PROCESSING

&8l |B1S

[CP]
Ccp
CP
CP
CP

[CP]
CP
CP

CP

ﬂ-
U

, ‘ cache
: L2
N v alyi cache

MBA

MBA

/),

MBA
': SCE
\ L2
’ cache
L2 ¢
cache
— Multichip
\ ceramic
MSC MSC ' module
/// /\ AN
/ /) \ 1 AV AN ~
SMI |SMI| |SMI| |SMI| |SMI| [SMI
memory card memory card

CP = central processor

MBA = memory bus adapter

MSC = main store control

SCE = system control element

SMI synchronous memory interface

Figure 18.6 IBM 2990 Multiprocessor Structure

The microprocessor in the z990 is relatively uncommon compared with other
modern processors because, although it is superscalar, it executes instructions in
strict architectural order. However, it makes up for this by having a shorter pipeline
and much larger caches and TLBs compared with other processors, along with other
performance-enhancing features.

The 2990 system comprises one to four books. Each book is a pluggable unit
containing up to 12 processors with up to 64 GB of memory, I/O adapters, and a
system control element (SCE) that connects these other elements. The SCE within

18.2 / SYMMETRIC MULTIPROCESSORS 649

each book contains a 32-MB L2 cache, which serves as the central coherency point
for that particular book. Both the L2 cache and the main memory are accessible by
a processor or 1/0 adapter within that book or any of the other three books in the
system. The SCE and L2 cache chips also connect with corresponding elements on
the other books in a ring configuration.

There are a several interesting features in the z990 SMP configuration, which
we discuss in turn:

¢ Switched interconnection
¢ Shared L2 caches

Switched Interconnection A single shared bus is a common arrangement on
SMPs for PCs and workstations (Figure 18.5). With this arrangement, the single bus
becomes a bottleneck affecting the scalability (ability to scale to larger sizes) of the
design. The 2990 copes with this problem in two ways. First, main memory is split into
multiple cards, each with its own storage controller that can handle memory accesses at
high speeds. The average traffic load to main memory is cut, because of the indepen-
dent paths to separate parts of memory. Each book includes two memory cards, for a
total of eight cards across a maximum configuration. Second, the connection from
processors (actually from L2 caches) to a single memory card is not in the form of a
shared bus but rather point-to-point links. Each processor chip has a link to each of the
L2 caches on the same book, and each L2 cache has a link, via the MSC, to each of
the two memory cards on the same book.

Each L2 cache only connects to the two memory cards on the same book. The
system controller provides links (not shown) to the other books in the configura-
tion, so that all of main memory is accessible by all of the processors.

Point-to-point links rather than a bus also provides connections to /O
channels. Each L2 cache on a book connects to each of the MBAs for that book.
The MBA:s, in turn, connect to the I/O channels.

Shared L2 Caches In a typical two-level cache scheme for an SMP, each proces-
sor has a dedicated L1 cache and a dedicated L2 cache. In recent years, interest in
the concept of a shared L2 cache has been growing, In an earlier version of its main-
frame SMP, known as generation 3 (G3), IBM made use of dedicated L2 caches. In
its later versions (G4, G5, and z900 series), a shared L2 cache is used. Two consider-
ations dictated this change:

1. In moving from G3 to G4, IBM doubled the speed of the microprocessors.
If the G3 organization were retained, a significant increase in bus traffic
would occur. At the same time, it was desired to reuse as many G3 compo-
nents as possible. Without a significant bus upgrade, the BSNs would
become a bottleneck.

2. Analysis of typical mainframe workloads revealed a large degree of sharing of
instructions and data among processors.

These considerations led the G4 design team to consider the use of one or
more L2 caches, each of which was shared by multiple processors (each processor
having a dedicated on-chip L1 cache). At first glance, sharing an L2 cache might

650 CHAPTER 18 / PARALLEL PROCESSING

seem a bad idea. Access to memory from processors should be slower because
the processors must now contend for access to a single L2 cache. However, if a
sufficient amount of data is in fact shared by multiple processors, then a shared
cache can increase throughput rather than retard it. Data that are shared and
found in the shared cache are obtained more quickly than if they must be obtained
over the bus.

18.3 CACHE COHERENCE AND THE MESI PROTOCOL

In contemporary multiprocessor systems, it is customary to have one or two levels of
cache associated with each processor. This organization is essential to achieve
reasonable performance. It does, however, create a problem known as the cache
coherence problem. The essence of the problem is this: Multiple copies of the same
data can exist in different caches simultaneously, and if processors are allowed to
update their own copies freely, an inconsistent view of memory can result. In
Chapter 4 we defined two common write policies:

* Write back: Write operations are usually made only to the cache. Main memory
is only updated when the corresponding cache line is flushed from the cache.

* Write through: All write operations are made to main memory as well as to
the cache, ensuring that main memory is always valid.

It is clear that a write-back policy can result in inconsistency. If two caches con-
tain the same line, and the line is updated in one cache, the other cache will unknow-
ingly have an invalid value. Subsequent reads to that invalid line produce invalid
results. Even with the write-through policy, inconsistency can occur unless other
caches monitor the memory traffic or receive some direct notification of the update.

In this section, we will briefly survey various approaches to the cache coher-
ence problem and then focus on the approach that is most widely used: the MESI
(modified/exclusive/shared/invalid) protocol. A version of this protocol is used on
both the Pentium 4 and PowerPC implementations.

For any cache coherence protocol, the objective is to let recently used local
variables get into the appropriate cache and stay there through numerous reads
and write, while using the protocol to maintain consistency of shared variables that
might be in multiple caches at the same time. Cache coherence approaches have
generally been divided into software and hardware approaches. Some implementa-
tions adopt a strategy that involves both software and hardware elements. Never-
theless, the classification into software and hardware approaches is still instructive
and is commonly used in surveying cache coherence strategies.

Software Solutions

Software cache coherence schemes attempt to avoid the need for additional hard-
ware circuitry and logic by relying on the compiler and operating system to deal
with the problem. Software approaches are attractive because the overhead of
detecting potential problems is transferred from run time to compile time, and the
design complexity is transferred from hardware to software. On the other hand,

